
EPR Study of Photoinduced Electron Transfer between Adsorbent and Adsorbed Species in Photo-SCR with NH₃

Kentaro Teramura, Tsunehiro Tanaka,* and Takuzo Funabiki
Department of Molecular Engineering, Graduate school of Engineering, Kyoto University, Kyoto 615-8510

(Received October 3, 2003; CL-030932)

Photoformed hole and electron on TiO_2 adsrobing NH_3 are trapped, respectively, by a NH_3 species adsorbed on TiO_2 and Ti^{4+} to evolve a NH_2 radical and a Ti^{3+} species. The photoinduced electron transfer takes place between Ti^{4+} and adsorbed NH_3 species efficiently, resulting in the formation of a NH_2 radical. The NH_2 radical on TiO_2 was stably present after the photoirradiation was ceased. It is quenched rapidly just after introduction of NO leaving the Ti^{3+} species.

NO_x exhausted from the stationary emission source is removed by the selective catalytic reduction process with NH₃ (NH₃-SCR) over V₂O₅/TiO₂ based oxide catalysts. ^{1,2} Recently, some authors have uncovered the catalysts activated at low temperatures. ^{3–5} We reported photo-SCR over TiO₂ photocatalyst at room temperature where 83% of NO conversion and 96% of N₂ selectivity were achieved in the conventional fixed bed flow system. ⁶ We have already proposed the reaction mechanism of photo-SCR system as follows. ⁷ NH₃ is adsorbed on Lewis acid site of TiO₂ rapidly. One hydrogen atom of the adsorbed NH₃ species interacts with a lattice oxygen. Electron transfer takes place from N atom of NH₃ adsorbed on TiO₂ to Ti atom of TiO₂ bulk under photoirradiation. The photoformed hole is captured by the adsorbed NH₃ to form a NH₂ radical. The NH₂ radical was reacted with NO in the gas phase readily to generate a NH₂NO spe-

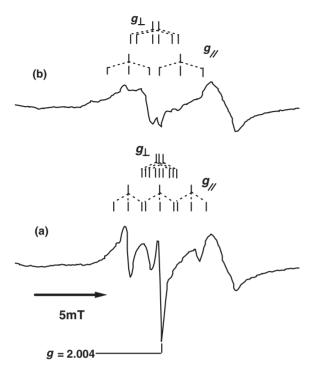


Figure 1. The EPR spectra of TiO₂ (a) after pretreatment, (b) after introduction of NH₃ in the dark, (c) under photoirradiation and (d) after introduction of NO in the dark.

cies as an intermediate. Thus, the formed NH_2NO species is decomposed to N_2 and H_2O and a Ti^{3+} species is reoxidized to a Ti^{4+} species by O_2 . We have already detected a NH_2NO intermediate by FTIR spectroscopy. However, we did not confirmed yet whether or not a NH_2 radical is generated on TiO_2 and was reacted with NO in the gas phase. In the present paper, we proposed the formation of a NH_2 radical which was readily reacted with NO in the gas phase deduced by EPR spectroscopy.

JRC-TIO-4 (equivalent to Degussa P-25) supplied from the Catalysis Society of Japan was hydrated in distilled water for 2 h at 353 K, followed by filteration with a suction pump. The sample was kept at 383 K for 24 h in an oven, followed by calcination in air at 773 K for 3 h. The specific surface area was evaluated to be $48 \,\mathrm{m}^2 \mathrm{g}^{-1}$ by the BET method using N₂ adsorption isotherm at 77 K. Powder XRD tells that the treated JRC-TIO-4 consists of anatase and rutile phases. EPR spectra were recorded using an in situ quartz cell with an X-band EPR spectrometer (JOEL JES-SRE2X) with 100 kHz field modulation at 123 K. Before the measurement, the catalyst sample was heated at 673 K in air and evacuated for 30 min at the same temperature, followed by treatment with 8 kPa O₂ for 90 min and evacuation for 30 min at 673 K. The g value and the relative amount of radical species were determined using a Mn marker. The effect of NH₃ adsorption onto TiO₂ upon the EPR spectra was investigated by recording the spectra after the equilibrium adsorption of NH₃ at room temperature followed by evacuation. On the other hand, NO was introduced to TiO2 adsorbing NH3 under the measurement condition. Some spectra were recorded under illumination from a 500-W ultrahigh-pressure mercury lamp.

Figure 1 shows the EPR spectra of TiO₂ after pretreatment, after introduction of NH₃ in the dark and under photoirradiation, and after introduction of NO in the dark. The lines at g = 1.972, 1.980 and 1.983 assignable to a Ti³⁺ species were observed after pretreatment as shown in Figure 1a. In addition, the lines at g =2.005 and 2.007 assignable to an electron trapped in an F centre appeared. It is known that a Ti³⁺ species and an F centre are formed on TiO₂ after heat treatment. On introducing NH₃, these lines decreased in intensity as shown in Figure 1b. After that, new lines were observed as soon as TiO2 adsorbing NH3 was illuminated at 123 K in Figure 1c. This new signal was quite stably present even after more than one hour when the irradiation was ceased. Some authors clarified by EPR that a NH2 radical is trapped on the surface of various materials under photoirradiation. 9-13 The three 14N lines are further split into three lines by the hyperfine interaction with two equivalent hydrogen atoms. We measured the EPR spectra of TiO2 adsorbing NH3 labeled N-15 to clarify the assignment of the lines as shown in Figure 2b. In addition, we determined the magnetic parameters for $^{14}{\rm NH_2}$ and $^{15}{\rm NH_2}$ radical in TiO₂ as shown in Table 1. The values are consistent with earlier works. 11,13 The lines at

Figure 2. The EPR spectra of TiO_2 after introduction of NH_3 under photoirradiation (a) by using $^{14}NH_3$ and (b) by using $^{15}NH_3$.

g > 2.004 in Figure 2b were changed in comparison with those found in introduction of ¹⁴NH₃ in Figure 2a. However, the lines at g < 2.004 in Figure 2b remained although ¹⁵NH₃ was admitted instead of ¹⁴NH₃. The EPR spectrum of a ¹⁵NH₂ radical exhibits five lines. ^{9,11,12} Evidently, in our case, the lines at g > 2.004 were due to a NH₂ radical. On the other hand, the lines at g < 2.004 were attributed to the other species. Hurum et al.⁸ reported the EPR spectra of Degussa P-25 under photoirradiation. They observed four characteristic lines. A couple of lines at g = 1.990 and 1.957 are assignable to lattice electron trapping sites in anatase and the rest two at g = 1.975 and 1.940 for rutile; i.e., the lines at g < 2.004 are assignable to Ti³⁺ species. We concluded that Figure 1c is identified to the EPR spectrum of a NH₂ radial overlapped with that of a Ti³⁺ species. Photoirradiation to TiO2 adsorbing NH3 contributes to the formation of a NH₂ radical and a Ti³⁺ species. This suggests that an electron transfer takes place from N atom of NH3 adsorbed on TiO₂ to Ti atom of TiO₂ bulk. An electron reduced a Ti⁴⁺ cation to a Ti³⁺ cation and a hole is captured by the adsorbed NH₃ on TiO₂ to form a NH₂ radical.

After introduction of NO in the dark, the lines of the NH_2 radical vanished quickly whereas the lines of the Ti^{3+} species increased in intensity (Figure 1d). The Ti^{3+} species are restored to the Ti^{4+} species by gaseous oxygen which we confirmed by

Table 1. Magnetic parameters for $^{14}NH_2$ and $^{15}NH_2$ radical in TiO₂

Radical	A^{N} / G	A^{N} / G	A^{H} / G
¹⁴ NH ₂	24	3	10
$^{15}NH_2$	37	6	15

UV–vis spectroscopy. The quick disappearance of a NH $_2$ radical suggests whether a NH $_2$ radical itself changed to an EPR silent species, or NO in the gas phase attacks to a NH $_2$ radical on TiO $_2$ to form an intermediate. We have already examined the formation of a NH $_2$ NO intermediate by FTIR spectroscopy after admittance of NO to TiO $_2$ adsorbing NH $_3$ under photoirradiation. The NH $_2$ NO intermediate is decomposed to N $_2$ and H $_2$ O. This is supported by the fact that the detected nitrogen gas was only 15 N 14 N in the 15 NO + 14 NH $_3$ + O $_2$ reaction. Taking into account these results, we can conclude that NO in the gas phase was reacted with NH $_3$ adsorbed on TiO $_2$. In addition, a spin state of NO, a doublet, coincides with that of a NH $_2$ radical. In conclusion, it is reasonable that 15 NO in the gas phase attacks a 14 NH $_2$ radical anchored on TiO $_2$ to form a NH $_2$ NO intermediate and O $_2$ reoxidized a Ti $^{3+}$ species to a Ti $^{4+}$ species.

Here, we clarified the charge transfer from N atom of NH_3 adsorbed on TiO_2 to Ti atom of TiO_2 (a hole and an electron are localized on a NH_3 species and a Ti^{4+} species, respectively). It is the first report that the charge transfer was confirmed between an adsorbent and an adsorbed species.

References

- 1 H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988).
- G. Busca, L. Lietti, G. Ramis, and F. Berti, *Appl. Catal.*, *B*, 18, 1 (1998).
- 3 P. G. Smirniotis, D. A. Pena, and B. S. Uphade, *Angew. Chem.*, *Int. Ed.*, **40**, 2479 (2001).
- 4 R. Q. Long, R. T. Yang, and R. Chang, *Chem. Commun.*, **2002**, 452.
- 5 G. S. Qi and R. T. Yang, Chem. Commun., 2003, 848.
- 6 T. Tanaka, K. Teramura, K. Arakaki, and T. Funabiki, *Chem. Commun.*, **2002**, 2742.
- 7 K. Teramura, T. Tanaka, and T. Funabiki, *Langmuir*, **19**, 1209 (2003).
- 8 D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, *J. Phys. Chem. B*, **107**, 4545 (2003).
- O. I. Brotikovskii, G. M. Zhidomirov, V. B. Kazanskii, A. I. Mashchenko, and B. N. Shelimov, *Kinet. Katal.*, 12, 616 (1971).
- V. M. Vorotyntsev, V. A. Shvets, and V. B. Kazanskii, *Kinet. Katal.*, 12, 597 (1971).
- 11 E. F. Vansant and J. H. Lunsford, J. Phys. Chem., 76, 2716 (1972).
- 12 S. Nagai, Bull. Chem. Soc. Jpn., 46, 1144 (1973).
- 13 N. Shimamoto, K. Hatano, T. Katsu, and Y. Fujita, *Bull. Chem. Soc. Jpn.*, 48, 18 (1975).